

Module 5

Software Evolution

Introduction

Software development does not stop when a system is delivered but continuesthroughout the

lifetimeof the system. After a system has been deployed, it inevitablyhas to change if it is to

remain useful.

Causes of system change

 Business changes and changes to user expectationsgenerate new requirements for the

existing software.

 Parts of the softwaremay have to be modified to correct errors that are found in

operation

 To adapt itforchanges to its hardware and software platform

 To improve its performance orother non- functional characteristics.

An alternative view of the software evolutionlife cycle, as shown in the following figure

Fig: Evolution and Servicing

 This model is depicted as having four phases – initial development, evolution,

servicing and phaseout.

 Evolution is the phase in which significant changes to the softwarearchitecture and

functionality may be made.

 During evolution, the software is used successfully and there is a constant streamof

proposedrequirements changes.

 At some stage in the life cycle, thesoftware reaches a transition point where

significant changes,implementing newrequirements, become less and less cost

effective.

 At that stage, the software moves from evolution to servicing.

 During servicing, the only changes thatare made are relatively small, essential

changes. However, the software is still useful.

 In the final stage, phase-out, the software may still be used but nofurther changes are

beingimplemented.

Evolution processes

Change identification and evolution process

System change proposals causes system evolution in all organizations.

Change proposals may come from

 existing requirements that have not been implementedin the released system

 requests for new requirements

 bug reports from system stakeholders

 new ideas for software improvement from the system development team

The processes ofchange identification and system evolution are cyclic andcontinue

throughout the lifetime ofa system. This process is as shown in the following figure

Fig: Change identification and evolution process

The software evolution process

Fig: The software evolution process

 An overview of the evolution process is as shown in the above figure

 The process includes the fundamental activities of change analysis, release

planning,systemimplementation, and releasing a system to customers.

 In the impact analysis stage, cost and impact of proposed changes are assessed to see

 how much of the system is affected by the change,

 how much it might cost toimplement the change.

 If the proposed changes are accepted,a new release of the system isplanned.

 During release planning, all proposed changes - fault repair, adaptation, and

newfunctionality - are considered.

 A decision is then made on which changes to implement in the next version of the

system.

 The changes are implemented and validated, and a new version of the system is

released.

 The processthen iterates with a new set of changes proposed for the next release.

The change implementation process

Fig: Change Implementation

 Change implementation is an iteration of the development process, where the revisions to

the system are designed, implemented, and tested.

 The change implementation process is as shown in the above figure.

 New requirements that reflect the system changes are proposed, analysed, and validated.

 System components are redesigned and implemented and the system is retested.

 If appropriate, prototyping of the proposed changes may be carried out as part of the

change analysis process.

The emergency repair process

Fig: The emergency repair process

 Change requests sometimes relate to system problems that have to be tackled urgently.

 These urgent changes can arise for three reasons:

1. If a serious system fault occurs that has to be repaired to allow normal operation to
continue.

2. If changes to the systems operating environment have unexpected effects that disrupt

normal operation.

3. If there are unanticipated changes to the business running the system, such as the

emergence of new competitors or the introduction of new legislation that affects the

system.

 The emergency repair process is required to quickly fix the above problems.

 The source code is analyzed and modified directly, rather than modifying the

requirements and design

 The disadvantages of emergency repair process are as follows

o the requirements, the software design, and the code become inconsistent
o the process of software aging is accelerated since a quick workable solution is

chosen rather than the best possible solution for quick fix

o future changes become more difficult and maintenance costs increase

Program evolution dynamics

 Program evolution dynamics is the study of system change.

 Lehman’s laws’ concerning system change are as shown below

Continuing change

 The first law states that system maintenance is an inevitable process.

 As the system’s environment changes, new requirements emerge and the system must be

modified.

Increasing complexity

 The second law states that, as a system is changed, its structure is degraded.

 To avoid this, invest in preventative maintenance.

 Time is spent improving the software structure without adding to its functionality.

 This means additional costs, more than those of implementing required system changes.

Large program evolution

 It suggests that large systems have a dynamic of their own

 This law is a consequence of structural factors that influence and constrain system

change, and organizational factors that affect the evolution process.

 Structural factors:

 These factors come from complexity of large systems.

 As you change and extend a program, its structure tends to degrade.

 Making large changes to a program may introduce new faults and then inhibit further

program changes.

 Organisational factors:

 These are produced by large organizations.

 Companies have to make decisions on the risks and value of the changes and the costs

involved. Such decisions take time to make.

 The speed of the organization’s decision-making processes therefore governs the rate of

change of the system.

Organizational stability

 In most large programming projects a change to resources or staffing has imperceptible

(slight) effects on the long-term evolution of the system.

Conservation of familiarity

 Adding new functionality to a system inevitably introduces new system faults.

 The more functionality added in each release, the more faults there will be.

 Relatively little new functionality should be included in this release.

 This law suggests that you should not budget for large functionality increments in each

release without taking into account the need for fault repair.

Continuing growth

 The functionality offered by systems has to continually increase user satisfaction.

 The users of software will become increasingly unhappy with it unless it is maintained

and new functionality is added to it.

Declining quality

 The quality of systems will decline unless they are modified to reflect changes in their

operational environment.

Feedback system

 Evolution processes must incorporate feedback systems to achieve significant product

improvement.

Software maintenance

 It is the general process of changing a system after it has been delivered.

 There are three different types of software maintenance:

o Fault repairs

o Environmental adaptations

o Functionality addition
Fault repairs

 Coding errors are usually relatively cheap to correct

 Design errors are more expensive as they may involve rewriting several program

components.

 Requirements errors are the most expensive to repair because of the extensive system

redesign which may be necessary.

Environmental adaptation

 This type of maintenance is required when some aspect of the system’s environment such

as the hardware, the platform operating system, or other support software changes.

 The application system must be modified to adapt it to cope with these environmental

changes.

Functionality addition

 This type of maintenance is necessary when the system requirements change in response
to organizational or business change.

Maintenance effort distribution

Fig: Maintenance effort distribution

 Software maintenance takes up a higher proportion of IT budgets than new development.

 Also, most of the maintenance budget and effort is spent on implementing new

requirements than on fixing bugs. This is shown in the above figure

Development and maintenance costs

Fig: Development and maintenance costs

 The above figure shows that overall lifetime costs may decrease as more effort is

expended during system development to produce a maintainable system.

 In system 1, more development cost has resulted in lesser overall lifetime costs when

compared to system 2.

 It is usually more expensive to add functionality after a system is in operation than it is to

implement the same functionality during development. The reasons for this are:

1. Team stability

 The new team or the individuals responsible for system maintenance are usually not the

same as the people involved in development

 They do not understand the system or the background to system design decisions.
 They need to spend time understanding the existing system before implementing changes

to it.

2. Poor development practice

 The contract to maintain a system is usually separate from the system development

contract.

 There is no incentive for a development team to write maintainable software.

 The development team may not write maintainable software to save effort.

 This means that the software is more difficult to change in the future.

3. Staff skills

 Maintenance is seen as a less-skilled process than system development.

 It is often allocated to the most junior staff.

 Also, old systems may be written in obsolete programming languages.

 The maintenance staff may not have much experience of development in these languages

and must learn these languages to maintain the system.

4. Program age and structure

 As changes are made to programs, their structure tends to degrade.

 As programs age, they become harder to understand and change.

 System documentation may be lost or inconsistent.

 Old systems may not have been subject to stringent configuration management so time is
often wasted finding the right versions of system components to change.

Maintenance prediction

 It is important try to predict what system changes might be proposed and what parts of the

system are likely to be the most difficult to maintain.

 Also estimating the overall maintenance costs for a system in a given time period is

important.

 The following figure shows these predictions and associated questions

Fig: Maintenance prediction

 The number of change requests for a system requires an understanding of the relationship

between the system and its external environment.

 Therefore, to evaluate the relationships between a system and its environment the

following assessment should be made

1. The number and complexity of system interfaces The larger the number of interfaces

and the more complex these interfaces, the more likely it is that interface changes will be

required as new requirements are proposed.

2. The number of inherently volatile system requirements The requirements that reflect

organizational policies and procedures are likely to be more volatile than requirements

that are based on stable domain characteristics.

3. The business processes in which the system is used As business processes evolve, they

generate system change requests. The more business processes that use a system, the

more the demands for system change.

 After a system has been put into service, the process data may be used to help predict

maintainability.

 The process metrics that can be used for assessing maintainability are as follows:

1. Number of requests for corrective maintenance An increase in the number of bug and

failure reports may indicate that more errors are being introduced into the program than

are being repaired during the maintenance process. This may indicate a decline in

maintainability.

2. Average time required for impact analysis The number of program components that

are affected by the change request. If this time increases, it implies more and more

components are affected and maintainability is decreasing.

3. Average time taken to implement a change request This is the amount of time needed

to modify the system and its documentation. An increase in the time needed to implement

a change may indicate a decline in maintainability.

4. Number of outstanding change requests An increase in this number over time may

imply a decline in maintainability.

Software reengineering

 Reengineering is done to improve the structure and understandability of legacy

software systems

 Reengineering makes legacy software systems easier to maintain
 Reengineering may involve redocumenting the system, refactoring the system

architecture, translating programs to a modern programming language, and modifying

and updating the structure and values of the system’s data.

 The functionality of the software is not changed due to reengineering

Benefits of reengineering

Reduced risk Reengineering reduces the high risk in redeveloping business-critical software.

Errors may be made in the system specification or there may be development problems.

Delays in introducing the new software may mean that business is lost and extra costs are

incurred.

Reduced cost The cost of reengineering may be significantly less than the cost of developing

new software.

The reengineering process

Fig: The reengineering process

The activities involved in reengineering process are as follows

1. Source code translation

 Using a translation tool, the program is converted from an old programming language

to a more modern version of the same language or to a different language.

2. Reverse engineering

 The program is analyzed and information extracted from it.

 This helps to document its organization and functionality.

 This process is usually completely automated.

3. Program structure improvement

 The control structure of the program is analyzed and modified to make it easier to

read and understand.

 This can be partially automated but some manual intervention is usually required.

4. Program modularization

 Related parts of the program are grouped together.

 Where appropriate, redundancy is removed.

 This is a manual process.

5. Data reengineering

 The data processed by the program is changed to reflect program changes.

 This may mean redefining database schemas, converting existing databases to the new

structure, clean up the data, finding and correcting mistakes, removing duplicate

records, etc.

 Tools are available to support data reengineering.

Reengineering approaches

 The costs of reengineering depend on the extent of the work that is carried out.

 The following figure shows a spectrum of possible approaches to reengineering

Fig: Reengineering approaches

 Costs increase from left to right.

 Source code translation is the cheapest option.

 Reengineering as part of architectural migration is the most expensive.

Disadvantages of reengineering

 There are limits to how much you can improve a system by reengineering.

 It isn’t possible to convert a system written using a functional approach to an object-
oriented system.

 Major architectural changes of the system data management cannot be carried out

automatically.

 The reengineered system will probably not be as maintainable as a new system developed

using modern software engineering methods.

Preventative maintenance by refactoring

 Refactoring is the process of making improvements to a program to slow down

degradation through change.

 It means modifying a program to improve its structure, to reduce its complexity, or to

make it easier to understand.

 Refactoring a program is not adding new functionality.
 Refactoring is considered as ‘preventative maintenance’ that reduces the problems of

future change.

Difference between reengineering and refactoring

 Reengineering takes place after a system has been maintained for some time and

maintenance costs are increasing.

 Refactoring is a continuous process of improvement throughout the development and

evolution process. It is intended to avoid the structure and code degradation that increases

the costs and difficulties of maintaining a system.

 There are situations (bad smells) in which the code of a program can be improved or

refactored. They are as follows

1. Duplicate code The same of very similar code may be included at different places in a

program. This can be removed and implemented as a single method or function that is called

as required.

2. Long methods If a method is too long, it should be redesigned as a number of shorter

methods.

3. Switch (case) statements These often involve duplication, where the switch depends on

the type of some value. The switch statements may be scattered around a program. In object-

oriented languages, you can often use polymorphism to achieve the same thing.

4. Data clumping Data clumps occur when the same group of data items (fields in classes,

parameters in methods) reoccur in several places in a program. These can often be replaced

with an object encapsulating all of the data.

5. Speculative generality This occurs when developers include generality in a program in

case it is required in future. This can often simply be removed.

Legacy system management

 Organizations have a limited budget for maintaining and upgrading legacy systems.

 They have to decide how to get the best return on their investment.

 This involves making a realistic assessment of their legacy systems and then deciding on

the most appropriate strategy for evolving these systems.

 There are four strategic options:

1. Scrap the system completely This option should be chosen when the system is not

making an effective contribution to business processes.

2. Leave the system unchanged and continue with regular maintenance This option

should be chosen when the system is still required but is fairly stable and the system users

make relatively few change requests.

3. Reengineer the system to improve its maintainability This option should be chosen

when the system quality has been degraded by change and where a new change to the system

is still being proposed.

4. Replace all or part of the system with a new system This option should be chosen when

factors, such as new hardware, mean that the old system cannot continue in operation or

where off-the-shelf systems would allow the new system to be developed at a reasonable

cost.

Legacy system assessment

Legacy systems can be assessed from two perspectives

 Business perspective is to decide whether or not the business really needs the system.

 Technical perspective is to assess the quality of the application software and the

system’s support software and hardware.

There are four clusters of systems

1. Low quality, low business value Keeping these systems in operation will be expensive

and the rate of the return to the business will be fairly small. These systems should be

scrapped.

2. Low quality, high business value These systems are making an important business

contribution so they cannot be scrapped. However, their low quality means that it is

expensive to maintain them. These systems should be reengineered to improve their quality.

They may be replaced, if a suitable off-the-shelf system is available.

3. High quality, low business value These are systems that don’t contribute much to the

business but which may not be very expensive to maintain. It is not worth replacing these

systems so normal system maintenance may be continued if expensive changes are not

required and the system hardware remains in use. If expensive changes become necessary,

the software should be scrapped.

4. High quality, high business value These systems have to be kept in operation. However,

their high quality means that you don’t have to invest in transformation or system

replacement. Normal system maintenance should be continued.

Business perspective

The four basic issues that have to be discussed with system stakeholders to assess business

value of the system are as follows

1. The use of the system If systems are only used occasionally or by a small number of

people, they may have a low business value. However, there may be occasional but important

use of systems. For example, in a university, a student registration system may only be used

at the beginning of each academic year. However, it is an essential system with a high

business value.

2. The business processes that are supported When a system is introduced, business

processes are designed to exploit the system’s capabilities. However, as the environment

changes, the original business processes may become obsolete. Therefore, a system may have

a low business value because it forces the use of inefficient business processes.

3. The system dependability If a system is not dependable and the problems directly affect

the business customers or mean that people in the business are diverted from other tasks to

solve these problems, the system has a low business value.

4. The system outputs If the business depends on the system outputs, then the system has a

high business value. Conversely, if these outputs can be easily generated in some other way

or if the system produces outputs that are rarely used, then its business value may be low.

Technical perspective

To assess a software system from a technical perspective, you need to consider both the

application system itself and the environment in which the system operates.

Factors used in environment assessment

Factors used in application assessment

Data can be collected to assess the quality of the system. The data that can be collected are

1. The number of system change requests System changes usually corrupt the system

structure and make further changes more difficult. The higher this value, the lower the quality

of the system.

2. The number of user interfaces The more interfaces, the more likely that there will be

inconsistencies and redundancies in these interfaces, hence reducing system quality.

	Module 5
	Introduction
	Evolution processes
	Change identification and evolution process
	The software evolution process
	The change implementation process
	The emergency repair process

	Program evolution dynamics
	Continuing change
	Increasing complexity
	Large program evolution
	 Structural factors:
	 Organisational factors:
	Organizational stability
	Conservation of familiarity
	Continuing growth
	Declining quality
	Feedback system

	Software maintenance
	Fault repairs
	Environmental adaptation
	Functionality addition
	Maintenance effort distribution
	Development and maintenance costs
	1. Team stability
	2. Poor development practice
	3. Staff skills
	4. Program age and structure
	Maintenance prediction
	Software reengineering
	Benefits of reengineering
	The reengineering process
	1. Source code translation
	2. Reverse engineering
	3. Program structure improvement
	4. Program modularization
	5. Data reengineering
	Reengineering approaches
	Disadvantages of reengineering
	Preventative maintenance by refactoring
	Difference between reengineering and refactoring

	Legacy system management
	Legacy system assessment
	Business perspective
	Technical perspective
	Factors used in environment assessment

